CAMP-dependent Protein Kinase Represses Myogenic Differentiation

نویسندگان

  • Barbara Winter
  • Thomas Braun
چکیده

Myf-5 and MyoD are members of a family of musclespecific basic helix-loop-helix (bHLH) proteins that are fundamental for myogenic cell differentiation and transcriptional activation of muscle-specific genes. Here we report that elevated levels of the intracellular signaling molecule CAMP and overexpression of CAMP-dependent protein kinase (PKA) inhibit myogenic differentiation. PKA represses the transcriptional activation of muscle-specific genes by the myogenic regulators Myf-5 and MyoD. The repression is directed at the basic HLH domain and is mediated through the E-box DNA consensus motif to which these proteins bind. However, phosphorylation of Myf-5 and MyoD by PKA in vitro does not affect their ability to bind to DNA. PKA specifically inhibits the activity of myogenic bHLH proteins, but not of other HLH proteins, such as the ubiquitously expressed E2A gene products E12 and E47 (E2-5). Our results demonstrate that PKA mediates the CAMP-induced inhibition of muscle cell differentiation by repressing the activity of Myf-5 and MyoD. The inhibition by PKA occurs post-translationally and presumably affects the transactivation process at a step following DNA-binding. The regulation of Myf-5 and MyoD function by a CAMP-dependent pathway may partly explain how external signals generated by serum and certain peptide growth factors can be transduced to the nucleus and inhibit dominant-acting factors that are responsible for myoblast differentiation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

THE EFFECT OF THEOPHYLLINE ON THE KINETICS OF cAMP-DEPENDENT PROTEIN KINASE CATALYTIC SUBUNIT, cAMP, PROTEIN KINASE INHIBITOR AND THEIR RELATIONSHIP IN LUNG TISSUE

We have investigated the effect of theophylline on the kinetics of the catalytic subunit of protein kinase and related factors in lung tissue. The results show that the point of highest concentration of the C subunit of protein kinase which is active in casein phosphorylation is at 3h of incubation time, but in the presence of 100 Ilg/ InL and 10µg/mL theophylline, this is shifted to I.S an...

متن کامل

Protein kinase A represses skeletal myogenesis by targeting myocyte enhancer factor 2D.

Activation of protein kinase A (PKA) by elevation of the intracellular cyclic AMP (cAMP) level inhibits skeletal myogenesis. Previously, an indirect modulation of the myogenic regulatory factors (MRFs) was implicated as the mechanism. Because myocyte enhancer factor 2 (MEF2) proteins are key regulators of myogenesis and obligatory partners for the MRFs, here we assessed whether these proteins c...

متن کامل

Activity and regulation of calcium-, phospholipid-dependent protein kinase in differentiating chick myogenic cells

The activity of calcium-, phospholipid-dependent protein kinase (PKc) was measured in (a) total extracts, (b) crude membrane, and (c) cytosolic fractions of chick embryo myogenic cells differentiating in culture. Total PKc activity slowly declines during the course of terminal myogenesis in contrast to the activity of cAMP-dependent protein kinase, which was also measured in the same cells. Myo...

متن کامل

Involvement of type 4 cAMP-phosphodiesterase in the myogenic differentiation of L6 cells.

Myogenic cell differentiation is induced by Arg(8)-vasopressin, whereas high cAMP levels and protein kinase A (PKA) activity inhibit myogenesis. We investigated the role of type 4 phosphodiesterase (PDE4) during L6-C5 myoblast differentiation. Selective PDE4 inhibition resulted in suppression of differentiation induced by vasopressin. PDE4 inhibition prevented vasopressin-induced nuclear transl...

متن کامل

Induction of terminal differentiation of Dictyostelium by cAMP-dependent protein kinase and opposing effects of intracellulr and extracellular cAMP on stalk cell differentiation.

Expression of the catalytic (C) subunit of the cAMP-dependent protein kinase (PKA) of Dictyostelium under the control of heterologous, cell-type-specific promoters causes ectopic terminal differentiation. When expressed under the control of a prespore-specific promoter, development is accelerated, to yield highly aberrant fruiting bodies that contain a basal mass of spore cells surrounding a ce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001